Deep Learning Crash Course
Sasank Chilamkurthy, Qure.ai
May 10, 2017

Contents

Calculus: Recap 1
Derivative 1
Gradient 1
Optimization 1
Gradient Descent 1
Example: Regression 2
Stochastic Gradient Descent 3
Neural Networks 3
Perceptron 3
Multi Layer Perceptrons and Sigmoid 5
ReLU Activation 6
Loss functions 6
Cross Entropy Loss 7
Softmax Activation 7
Backpropogation 8
Deep Networks and why they are hard to train
Convolutional Neural Networks 11
Local receptive fileds 12
Shared weights and biases 13
Pooling layers 15
Case Study: LeNet 16
Tricks of the Trade 17
Dropout 17
Data Augmentation 19
Weight initialization and Batch Normalization
Practical Advice 20
ImageNet Dataset and ILSVRC 20
Transfer Learning 21
GPUs 22
Other FAQ 22

Recommended reading 23

10

19

Calculus: Recap

Let’s begin with a short recap of calculus.

Derivative

Derivative of function f(v) (f'(v) or %) measures sensitivity of
change in f(v) with respect of change in v.

Direction (i.e sign) of the derivative at a points gives the direc-
tion of (greatest) increment of the function at that point.

Gradient

The gradient is a multi-variable generalization of the derivative. It
is a vector valued function. For a function f(vq,v,...,v,), gradient
is a vector whose components are n partial derivatives of f:

vi=(L Y

vy dvy” T Qv

Similar to derivative, direction of the gradient at a point is the

steepest ascent of the function starting from that point.

Optimization

Given a function C(v1,vy,...,v,), how do we optimize it? i.e, find a
point which minimizes this function globally.

This is a very generic problem; lot of practical and theoretical
problems can be posed in this form. So, there is no general answer.

Gradient Descent

However, for a class of functions called convex functions, there is
a simple algorithm which is guaranteed to converge to the global
minimum. Convex functions have only one minima. They look
something like a valley.

To motivate our algorithm, imagine a ball is put at a random
point on our valley and allowed to roll (figure 3) . Our common
sense tells that ball will eventually roll to the bottom of the valley.

"
ttiolty A |

DEEP LEARNING CRASH COURSE 2

flz) = sin (2?) + 1
A= (-1.75,0.86)

/.
2 NS 0 v 3
f(=1.75) = —6.03

Figure 1: Derivative illustration. Red is
for positive v direction and green is for
negative v direction. Source.

7 TR
t

Figure 2: Gradient of the 2D function
flx,y) = xe(P+%) i plotted as blue
arrows over the pseudocolor (red is
for high values while blue is for low
values) plot of the function. Source.

Figure 3: Gradient descent illustration:
a ball on a valley. Source.

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Gradient
http://neuralnetworksanddeeplearning.com/chap1.html

Let’s roughly simulate the motion of the ball! Key observation
is that the ball moves in the steepest direction of descent. This is
negative * of the gradient’s direction.

Great! Let’s put together our algorithm:

1: Start at a random point: v
2: while v hasn’t converged do
3> Update v in the direction of steepest descent:

v—v =v—yVC

4. end while

Here # is called learning rate. If it is too small, algorithm can be
very slow and might take too many iterations to converge. If it is
too large, algorithm might not even converge.

Example: Regression

Let’s apply the things learnt above on the linear regression prob-
lem. Here’s a recap of the linear regression:

Our model is y(x) = wx + b. Parameters are v = (w, b). We are given
training pairs (x!,y1), (x2,42),..., (x",y") 2.

We want to find w and b which minimize the following cost/loss
function:

C(w,b) =

|~
.M:

1 n . .
Ci(w,b) = - 3 lly(x') - y'|I?
i=1

i=1

where C;(w,b) = 1|y(x’) — y'||> = }|lwx’ + b — y||? is the loss of the
model for i th training pair.

Let’s calculate gradients,

1 n

VC=-) VG

iz

where VC; is computed using:
o (9Gi 9G _ i Nod (o i
VG = (8w'8b> = ((wx +b—y)x', (wx'+0b y))

Update rule is

n
U—)U/:U—WVC:U—ZZVCI‘
i=1

Stochastic Gradient Descent

In the above example, what if we have very large number of sam-
plesien > 0? At every optimization step, we have to compute
V(; for each sample i = 1,2,...,n. This can be very time consum-
ing!

DEEP LEARNING CRASH COURSE 3

* Gradient gives us steepest direction
of ascent.

Algorithm 1: Gradient Descent

Figure 4: Gradient descent on a series
of level sets. Source.

2 Notation clarifiction: Here, super-
scripts are indices, not powers

https://en.wikipedia.org/wiki/Gradient_descent

Can we approximate VC with a very few samples? Yes!

18 1
-y VCi~= Y VG
niz M jes,,

where S, is random subset of size m < nof 1,2,...,n. It turns
out that this approximation, even though estimated only from a
small random subset of samples, is good enough for convergence
of gradient descent. This subset of data is called minibatch and this
technique is called stochastic gradient descent.

Then stochastic gradient descent works by picking a randomly
chosen subset of data and trains (i.e updates v) with gradient ap-
proximation computed from them. Next, another subset is picked
up and trained with them. And so on, until we’ve exhausted all
the training data, which is said to complete an epoch of training.
Concretely, following is the stochastic gradient descent algorithm.

1: Start at a random point: v

2: for a fixed number of epochs do

3> Randomly partition the data into minibatches each of size m
4. for For each minibatch S;; do

5: Update the parameters using

Ui
v—v=v—L Y VG
€Sy

6: end for
7. end for

Neural Networks
With this background, we are ready to start with neural networks.

Perceptron

Perceptron, a type of artificial neuron was developed in the 1950s
and 1960s. Today, it's more common to use Rectified Linear Units
(ReLUs). Nevertheless, it's worth taking time to understand the
older models.

So how do perceptrons work? A perceptron takes several inputs,
X1, X2, ... Xy and produces a single output (figure 5).

Iy
T output
T3

Weights w1, w», . .. wy, decide the importance of each of the in-

puts on output y(x). There is also a threshold b to decide the output.

DEEP LEARNING CRASH COURSE 4

Algorithm 2: Stochastic Gradient
Descent

Figure 5: Perceptron Model. Source.

http://neuralnetworksanddeeplearning.com/chap1.html

These are the parameters of the model. The expression of the out-
putis

y(x)=c (2 wixj — b>
]

where 0(z) is step function,

o(z) = 0 ifz<0
N 1 ifz>0

Therefore

i L <
y(x) {O if Z]w]x]_b

1 if Z]w]x] >b

That’s the basic mathematical model. A way you can think about
the perceptron is that it’s a device that makes decisions by weighing

up evidence. An example 3:

Suppose the weekend is coming up, and you’'ve heard that there’s
going to be a cheese festival in your city. You like cheese, and are
trying to decide whether or not to go to the festival. You might make
your decision by weighing up three factors:

¢ Is the weather good?
* Does your boyfriend or girlfriend want to accompany you?

¢ Is the festival near public transit? (You don’t own a car).

We can represent these three factors by corresponding binary vari-
ables x1, xp and x3

Now, suppose you absolutely adore cheese, so much so that you're
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. But perhaps you really
loathe bad weather, and there’s no way you’'d go to the festival if

the weather is bad. You can use perceptrons to model this kind of
decision-making.

You can use perceptrons to model this kind of decision-making. One
way to do this is to choose a weight w; = 6 for the weather, and

wy = 2 and w3 = 2 for the other conditions and threshold (or more
aptly, bias) term b = 5. By varying the weights and the threshold, we
can get different models of decision-making.

Another way perceptrons can be used is to compute the elemen-
tary logical functions we usually think of as underlying computa-
tion, functions such as AND, OR, and NAND. Check that perceptron in
6 implements NAND:

I -9

-2

DEEP LEARNING CRASH COURSE §

3 This example is straight from here

Figure 6: NAND implemented by per-
ceptron. Source

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html

DEEP LEARNING CRASH COURSE

If you are familiar with digital logic, you will know that NAND
gate is a universal gate. That is, any logical computation can be
computed using just NAND gates. Then, the same property follows
for perceptrons.

Multi Layer Perceptrons and Sigmoid

Although perceptron isn’t a complete model of human decision-
making, the above example illustrates how a perceptron can weigh
up different kinds of evidence in order to make decisions. And it
should seem plausible that a complex network of perceptrons could
make quite subtle decisions. (figure 7)

Figure 7: Multi layer perceptron.
N Source

—7
| =
inputs Wﬁg.% .*‘

()
e
“"{'“} f output
TR P
O

This network is called Multi layered perceptron (MLP). In this MLP,
the first column of perceptrons - what we’ll call the first layer of per-
ceptrons - is making three very simple decisions, by weighing the
input evidence. What about the perceptrons in the second layer?
Each of those perceptrons is making a decision by weighing up the
results from the first layer of decision-making. In this way a per-
ceptron in the second layer can make a decision at a more complex
and more abstract level than perceptrons in the first layer. And even
more complex decisions can be made by the perceptron in the third
layer. In this way, a many-layer network of perceptrons can engage
in sophisticated decision making.

How do we learn the parameters of the above model? Gradient

Descent! 4 However, the network is very discontinuous. In fact, + MLP model is far from convex.
a small change in the weights or bias of any single perceptron in Therefore, gradient descent is not
. guaranteed to converge! But it turns
the network can sometimes cause the output of that perceptron out that it works fine with a few
to completely flip, say from o to 1. This makes it very difficult for tweaks which we describe below.

gradient descent to converge.

How do we overcome this? What is the source of this discon-
tinuity? Remember that output of perceptron is given by y(x) =
o (Zj wixj — b) where 0(z) is step function

o(x) = 0 ifz<0
N 1 ifz>0

This o(z) is the source of discontinuity. Can we replace step
function with a smoother version of it?

6

http://neuralnetworksanddeeplearning.com/chap1.html

Check out the following function:

1

7@ = 1=

If you graph it, it's quite clear that this function is smoothed out
version of a step function. This function is called sigmoid.

With the sigmoid neuron, gradient descent can converges. Before
computing gradients for gradient descent, we need to discuss loss
and activation functions.

ReLU Activation

By now, you have seen that general form of a artificial neuron is
y(x) = o (Ljwjxj — b). Here the function o (z) is called activation
function. So far, we have seen two different activations:

1. Step function
2. Sigmoid function

Let me introduce another activation function, rectifier or rectified
linear unit (ReLU):

o(z) = max(0, z)

Because of reasons we describe later 5, ReLUs are preferred
activation functions these days. You will almost never see sigmoid
activation function in modern deep neural networks.

Loss functions

To train any machine learning model, we need to measure how well

the model fits to training set. Such a function is called loss/cost ©
function. In regression problem we discussed before, cost function
was C(w,b) = 2 Y | [ly(x") — y'||*>. Minimizing the cost function
trains the model.

We will make two assumptions about our cost function:

1. The cost function can be written as an average over cost func-
tions C; for individual training examples, (x/,y'). i.e, C =
1ymn
7 i—1 Ci

2. Cost can be written as a function of the outputs from the neural
network. i.e, C; = L(y(x'),y’) where y(x) is the output from the
network.

In the case of regression, we used Ly loss, Ly(0,y) = %[lo — y|*
We could have also used L; loss, Li(0,y) = |o —y|.

DEEP LEARNING CRASH COURSE 7

Figure 8: Sigmoid function. When z

is large and positive, Then e 7% ~

and so 0(z) ~ 1. Suppose on the other
hand that z is very negative. Then

e % — o0, and 0 (z) ~ 0. Source.

Figure 9: ReLU. Source.

5 Vanishing gradients problem. Read
more here

61 use terms loss function and cost
function interchangeably.

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap3.html
http://neuralnetworksanddeeplearning.com/chap5.html

DEEP LEARNING CRASH COURSE 8

Cross Entropy Loss

What if we have a classification problem? What loss do we use?
Consider a MLP for digit classification on the right (figure 10).

Here, we have output o of size 10 and a target class y. We could I
have used Li(0,e,) or L(0,e,) loss where e, is yth unit vector. But T
it turns out that this doesn’t work very well.

Instead, we will consider the outputs as a probability distribu-

tion over the 10 classes and use what is called a cross entropy loss:

L(o,y) = —log(oy)
Figure 10: MLP for digit classification.
To understand this function, realize that 0,, yth output is the Source.

predicted probability of the target class y. Minimizing negative
of log of this probability, maximizes the probability. Also, L > 0
because log(x) < 0 for x € [0,1].

Softmax Activation

If we use cross entropy loss, we cannot use sigmoids as activations
of output layer because sigmoids do not guarantee a probability
distribution (Although each component of the output will be in
[0,1], they need not add up to 1.)

We therefore use an activation layer called softmax. According to
this function, the activation a; of the jth output neuron is

e’
aj = W
where in the denominator we sum over all the output neurons.
This expression may seem opaque if you are not familiar with it.
Observe the following;:

1. Activations are positive: aj >0
2. Activations sum to 1: Zj aj=1

3. If you increase z;, keeping others constant, a,, increases. Other
activations decrease to ensure sum remains 1.

4. If z;; is much larger than the others, a,, ~ 1 and a; ~ 0 for

k # m.

Therefore softmax is a probability distribution which behaves
like smooth version of argmax.

Backpropogation

We have so far discussed the model component of neural networks.
We haven't yet discussed how we learn the parameters of the net-
works i.e, weights and biases of the layers.

As expected, we will use stochastic gradient descent. For this, we
need gradients of C;, loss for the ith training example, with respect
to all the parameters of network. Computation of this quantity, VC;

http://neuralnetworksanddeeplearning.com/chap1.html%22

is slightly involved. Let’s start with writing the expression for C;.
Let’s represent all the parameters of the network with 6:

Ci(0) = L (y(x',0),y')
Let’s break the above function into composition of layers (or
functions in general)?

C=fro fp_10---ofjo---0fy

o

k.

=2
L

Layer 1

Here, Ith 8 layer/function takes in input #; and outputs o;

o = fi(u,0) (1)

where 0 are learnable parameters of this layer. Since output of
[— 1th layer is fed to [th layer as input,

up=0j1 (2)
We require VC = (gTCl' chz” .y E?Ti)‘ Therefore, we need to
compute, for/ =1,2,...L
o€ _ dor
90, 90,
To compute this quantity, we will compute generic 2:
9om
a0,
Before getting started, let’s write down the chain rule. Chain rule
is the underlying operation of our algorithm.

uy or = fi(ui,6;)

L1
Layer 2 —————— Layer| |———————> .- —»| layer L — 0, = C

Chain Rule: For function f(x, y),

of _of ox of

ot ox ot "oy ot G)

DEEP LEARNING CRASH COURSE ¢

7 Dropping subscript for brevity

Figure 11: Cost function as a composi-
tion of functions

8In papticular,C =op = fr(uy) =
L(ur,y')

2 You will see ahead why this quantity
is useful.

DEEP LEARNING CRASH COURSE

If m>1,

dom
8791 =0 (4)

because output of the earlier layers doesn’t depend on parame-
ters of the later layer.
If m = I, using equation (1) and the fact that #; and 6; are inde-

pendent,
801 - afl
36, ~ 96, 5)
g—g is a computable quantity which depends on the form of layer
f1.
If m < I, using equation (1), (2), chain rule (3),
%om _ 9fm
20, 90,
O, B O OB
N 8um 891 a@m 891
_ Ofm , Om
o aum 891
_ 3, 200
Therefore,
0 w06 ©
Like %’ 3—5’1 is a computable quantity which depends on layer f;.
Let’s put everything together and compute the required quantity *°: © Apply (6) repetitively
o€ _ 9o
90, 96
_ 0, do
auL 891

9fL . dfr—1 .)
auL alle,1 891

_9ft 9fi dfi-1 90
Toup ou w0
_9ft 9fi dfi1 9fi
T ou ou o, o6,

Now, algorithm to compute gradients VC, i.e. g—gl forall I is
fairly clear:

10

DEEP LEARNING CRASH COURSE

1: {Forward pass}

2: Set ug = x
for/=1,...Ldo
Store u; = f1(u;_1,6))
end for
{Backward pass}

Set buffer =1

fori=L,L—-1,...1do

Store g—gcl = g—g; * buffer

e ® N I o h oW

10: Update buffer = 3/ « butfer

11: end for

. 9C oC oC
12: return (391, W, 39L>.

Although this derivation is for scalar functions, it will work with
vector functions with a few modifications.
Deep Networks and why they are hard to train

Whenever you are asked to do any complex task, you usually break
it down to sub tasks and solve the component subtasks. For in-
stance, suppose you're designing a logical circuit to multiply two
numbers. Chances are your circuit will look something like figure
12.

Inputs: x and y

‘ First layer, doing simple tasks, e.g. adding bits ‘

‘ Integrated into more complex tasks, e.qg. adding numbers ‘

‘ Integrated into multiplication ‘

Qutput: x.y

Similarly deep neural networks (i.e lot of layers) can build up
multiple layers of abstraction. Consider the network in figure 13.

If we're doing visual pattern recognition, then the neurons in the
first layer might learn to recognize edges, the neurons in the second
layer could learn to recognize more complex shapes, say triangle or
rectangles, built up from edges. The third layer would then recog-
nize still more complex shapes. And so on. These multiple layers of
abstraction seem likely to give deep networks a compelling advan-
tage in learning to solve complex pattern recognition problems.

How do we train such deep networks? Stochastic gradient de-
scent as usual. But we’ll run into trouble, with our deep networks
not performing much (if at all) better than shallow networks. Let’s
try to understand why are deep networks hard to train:

Algorithm 3: Back Propogation

11

Figure 12: Logical circuit for multipli-

cation. Source.

http://neuralnetworksanddeeplearning.com/chap5.html%22

DEEP LEARNING CRASH COURSE 12

hidden layer 1 hidden layer 2 hidden layer 3 Figure 13: Deep Neural Network.

input layer
Source.

1. Consider the number of parameters in the network. They are
huge! If we have to connect 1000 unit hidden layer to 224x224
(50,176) image, we have 50,176 * 1000 + 1000 ~ 50e6 parameters
in that layer alone! There are so many parameters that network
can easily overfit on the data without generalization.

2. Gradients are unstable. Recall the expression for the gradients,

aC _ 9fL , 9fia 9fic1 , i 9fm ;
W = ou Fomy * % auy *oag - U few of G <1, they will

multiply up and make 3—(5'; ~ 0 ™. Similarly if few of % > 1, This is the reason why sigmoids are

. . 19 .
they make g—g — 00. avoided. For sigmoid, % = ’%’h:u is

close to zero if u is either too large or

. . . . too small. It's maximum is only 1/4
Keep these two points in mind. We will see several approaches

to deep learning that to some extent manage to overcome or route
around these.

Convolutional Neural Networks

Let’s go back to the problem of handwritten digit recognition. MLP
looks like the MLP in figure 14

Figure 14: MLP for MNIST. Source.

hidden layer 1 hidden layer 2 hidden layer 3

input layer

In particular, we have connected all the pixels in 28x28 images
i.e, 784 pixels to each neuron in hidden layer 1.

http://neuralnetworksanddeeplearning.com/chap5.html%22
http://neuralnetworksanddeeplearning.com/chap5.html%22

DEEP LEARNING CRASH COURSE

Upon reflection, it’s strange to use networks with fully-connected
layers to classify images. The reason is that such a network ar-
chitecture does not take into account the spatial structure of the
images. For instance, it treats input pixels which are far apart and
close together on exactly the same footing. Such concepts of spatial
structure must instead be inferred from the training data.

But what if, instead of starting with a network architecture
which is tabula rasa, we used an architecture which tries to take
advantage of the spatial structure? In this section I describe convo-
lutional neural networks. These networks use a special architecture
which is particularly well-adapted to classify images. Using this
architecture makes convolutional networks fast to train. This, in
turn, helps us train deep, many-layer networks, which are very
good at classifying images. Today, deep convolutional networks
or some close variant are used in most neural networks for image
recognition.

Convolutional neural networks use three basic ideas:

1. Local receptive fields
2. Shared weights

3. Pooling.

Local receptive fileds

As per usual, we’ll connect the input pixels to a layer of hidden
neurons. But we won’t connect every input pixel to every hidden
neuron. Instead, we only make connections in small, localized
regions of the input image.

input neurons Figure 15: Local receptive fields of
convolution. Source.

ooooo. - hidden neuron
00000

iy

o e
QOOTOT

That region in the input image is called the local receptive field
for the hidden neuron. It’s a little window on the input pixels.
Each connection learns a weight. And the hidden neuron learns an
overall bias as well. You can think of that particular hidden neuron
as learning to analyze its particular local receptive field.

13

http://neuralnetworksanddeeplearning.com/chap6.html%22

DEEP LEARNING CRASH COURSE 14

We then slide the local receptive field across the entire input
image. For each local receptive field, there is a different hidden
neuron in the first hidden layer. To illustrate this concretely, let’s
start with a local receptive field in the top-left corner (figure 16)

input neurons
gooe first hidden layer

Then we slide the local receptive field over by one pixel 2 to the
right (i.e., by one neuron), to connect to a second hidden neuron *3
(figure 17)

input neurons

2908 first hidden layer
QOO0 0

[sls s

COee

Shared weights and biases

I've said that each hidden neuron has a bias and 5x5 weights con-
nected to its local receptive field. What I did not yet mention is that
we're going to use the same weights and bias for each of the 24x24
hidden neurons.

Sharing weights and biases means that all the neurons in the
first hidden layer detect exactly the same feature just at different
locations in the input image. To see why this makes sense, consider
the convolution filter in figure 18

Let’s take an example image and apply convolution on a recep-
tive field (figure 19, 20).

Basically, in the input image, if there is a shape that generally

Figure 16: Convolution. Source.

> Sometimes a different stride length
(e.g, 2) is used.

3 Note that if we have a 28 x 28 input
image, and 5 x 5 local receptive fields,
then there will be 24 x 24 neurons in
the hidden layer.

Figure 17: Slide the convolution.
Source.

http://neuralnetworksanddeeplearning.com/chap6.html%22
http://neuralnetworksanddeeplearning.com/chap6.html%22

DEEP LEARNING CRASH COURSE 15

o o Jo o [0 [= o Figure 18: A convolutional filter.
Source.

] o L] 30 [o o

o |o |o [0 [0 [o [0

1] [1] L] 30 [1} [1] o

o 0 [0|0 L] o

LSS

Original image Visualization of the filter on the image

Figure 19: Convolution on an example
image. Source.

Figure 20: Apply convolution. Source.

o|0f0 (0 |O |0 |30 ofojo|o 0 30 |0
0|0 (0 |0 |50]|50]50 o|ojofo 30 |0 0
0|00 [20|50|0 |O 0|00 |30 |0 0 0
0|00 |50|50|0 |O * ofojo|30 |0 0 0
0|00 |50|50|0 |O ofo|0 |30 |0 0 0
0|00 |50|50|0 |0 0|00 |30 |0 0 0
0|0f0 |50(30]|0 (0 ojojofo 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter

receptive field field

Multiplication and Summation = (50%30)+(50%30)+(50%30)+(20*30)+(50*30) = 6600 (Alarge number!)

resembles the curve that this filter is representing, then all of the
multiplications summed together will result in a large value! Now
let’s see what happens when we move our filter (figure 21).

o jo o jo o joje ofofofo Jo [30]0 Figure 21: Apply convolution at a
0 010 1% 9 10 19 ojojojo |00 |0 different receptive field. Source.
a0 [40]0 [0 |0 |0 sTo o Tz o 1o 1o
l a0f20]0 |o o |0 |o * oTolo 30 0 [0 1o
a 0o |s0]0 [o Jo Jo [0 oTolo 30 0 [0 1o
? 0 |0 |50f0 jo Jo |o ojojo30]0 |o |0
25]25]0 [50]0 |o |0 oTololo 1o [0 1o
Visualization of the filter on the image Pixel representation of receptive field Pixel representation of filter

‘ Multiplication and Summation =0

Output turns out to be zero. Therefore, this convolution picks
up a right bending curve wherever it is on . To put it in slightly
more abstract terms, convolutional networks are well adapted to
the translation invariance of images: move a picture of a cat (say) a
little ways, and it’s still an image of a cat

The network structure I've described so far can detect just a
single kind of localized feature. To do image recognition we’ll need

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

DEEP LEARNING CRASH COURSE

more than one feature map. And so a complete convolutional layer
consists of several different feature maps.

28 » 28 input neurons first hidden layer: 3 x 24 x 24 neurons Figure 22: Apply convolution at a
different receptive field. Source.

A big advantage of sharing weights and biases is that it greatly
reduces the number of parameters involved in a convolutional net-
work. For each feature map we need 25=5x5 shared weights, plus
a single shared bias. So each feature map requires 26 parameters.
If we have 20 feature maps that’s a total of 20x26=520 parameters
defining the convolutional layer. By comparison, suppose we had a
fully connected first layer, with 784=28x28 input neurons, and a rel-
atively modest 30 hidden neurons. That’s a total of 784x30 weights,
plus an extra 30 biases, for a total of 23,550 parameters.

Pooling layers

In addition to the convolutional layers just described, convolutional
neural networks also contain pooling layers. Pooling layers are
usually used immediately after convolutional layers. What the
pooling layers do is simplify the information in the output from the
convolutional layer.

In detail, a pooling layer takes each feature map output from
the convolutional layer and prepares a condensed feature map. For
instance, each unit in the pooling layer may summarize a region of
(say) 2x2 neurons in the previous layer. As a concrete example, one
common procedure for pooling is known as max-pooling. In max-
pooling, a pooling unit simply outputs the maximum activation in
the 2x2 input region, as illustrated in figure 23.

Note that since we have 24x 24 neurons output from the convolu-
tional layer, after pooling we have 12x 12 neurons.

As mentioned above, the convolutional layer usually involves
more than a single feature map. We apply max-pooling to each
feature map separately. So if there were three feature maps, the
combined convolutional and max-pooling layers would look like
figure 24.

We can think of max-pooling as a way for the network to ask
whether a given feature is found anywhere in a region of the image.
It then throws away the exact positional information. The intuition

16

http://neuralnetworksanddeeplearning.com/chap6.html

DEEP LEARNING CRASH COURSE 17

hidden neurons (output from feature map) Figure 23: Pooling Layer. Source.

max-pooling units

oo
oo

0

28 x 28 input neurons 3 x 24 % 24 neurons Figure 24: Convolution and pooling
layer. Source.

1 3 x 12 x 12 neurons

=

is that once a feature has been found, its exact location isn’t as
important as its rough location relative to other features. A big
benefit is that there are many fewer pooled features, and so this
helps reduce the number of parameters needed in later layers.

Case Study: LeNet

Let’s put everything we’ve learnt together and analyze one of the
very early successes '* of convolutional networks: LeNet. This is 1 LeNet is published in 1998! CNNs
the architecture of LeNet: are not exactly new.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
39%32 6@28x28

S2: f. maps
6@14x14

[
‘ \ Full coanection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Figure 25: LeNet architecture. Source.

Let’s go over each of the component layers of LeNet: > 5] actually describe slightly modified
version of LeNet.

* Input: Gray scale image of size 32 x 32.

* Ci1: Convolutional layer of 6 feature maps, kernel size (5, 5) and
stride 1. Output size therefore is 6x28x28. Number of trainable

http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

DEEP LEARNING CRASH COURSE 18

parameters is (5% 5+ 1) 6 = 156.

e S2: Pooling/subsampling layer with kernel size (2, 2) and stride
2. Output size is 6x14x14. Number of trainable parameters = o.

¢ C3: Convolutional layer of 16 feature maps. Each feature map is
connected to all the 6 feature maps from the previous layer. Ker-
nel size and stride are same as before. Output size is 16x10x10.
Number of trainable parameters is (6 5% 5+ 1) % 16 = 2416.

* Sy4: Pooling layer with same hyperparameters as above. Output
size = 16 X 5 X 5.

* Cs: Convolutional layer of 120 feature maps and kernel size (5,
5). This amounts to full connection with outputs of previous layer.
Number of parameters are (16 %55+ 1) * 120 = 48120.

e F6: Fully connected layer'® of 84 units. i.e, All units in this layer 1 This is same as layers in MLP we’ve
are connected to previous layer’s outputs. Number of parameters seen before.

is (120 + 1) * 84 = 10164

® Output: Fully connected layer of 10 units with softmax activa-

tion'7. 7 Ignore ‘Gaussian connections’. It is
for a older loss function no longer in
Dataset used was MNIST. It has 60,000 training images and use.

10,000 testing examples.

Tricks of the Trade

Dropout

With so many parameters in neural networks, overfitting is a real
problem. For example, LeNet has about the same number of pa-
rameters as there are training examples. There are a few techniques
like Ly /Ly regularization you might be familiar with. These modify
cost function by adding L; /Ly norm of parameters respectively.

Dropout is radically different for regularization. We modify the
network itself instead of the cost function. Suppose we’re trying to
train a network in figure 26

With dropout, We start by randomly (and temporarily) deleting
half the hidden neurons in the network, while leaving the input and
output neurons untouched. After doing this, we’ll end up with a
network like in figure 27.

We forward-propagate the input x through the modified net-
work, and then backpropagate the result, also through the modified
network. After doing this over a mini-batch of examples, we update
the appropriate weights and biases. We then repeat the process,
first restoring the dropout neurons, then choosing a new random
subset of hidden neurons to delete, estimating the gradient for a
different mini-batch, and updating the weights and biases in the
network.

The weights and biases will have been learnt under conditions
in which half the hidden neurons were dropped out. When we

DEEP LEARNING CRASH COURSE 19

Figure 26: Network before dropout

Figure 27: Network after dropout

actually run the full network that means that twice as many hid-
den neurons will be active. To compensate for that, we halve the
weights outgoing from the hidden neurons.

8.

Why would dropout help? Explanation from AlexNet paper *°: % AlexNet is the paper which lead to

renaissance of CNNs.
This technique reduces complex co-adaptations of neurons, since
a neuron cannot rely on the presence of particular other neurons.
It is, therefore, forced to learn more robust features that are useful
in conjunction with many different random subsets of the other
neurons.

In other words, we can think of dropout as a way of making
sure that the model is robust to the loss of any individual piece of
evidence. Of course, the true measure of dropout is that it has been
very successful in improving the performance of neural networks.

Data Augmentation

You probably already know that more data leads to better accu-
racy. It’s not surprising that this is the case, since less training data
means our network will be exposed to fewer variations in the way
human beings write digits.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Obtaining more training data can be expensive, and so is not al-
ways possible in practice. However, there’s another idea which can
work nearly as well, and that’s to artificially expand the training
data.

Suppose, for example, that we take an MNIST training image of
a five, and rotate it by a small amount, let’s say 15 degrees (figures
28, 29).

It’s still recognizably the same digit. And yet at the pixel level
it’s quite different to any image currently in the MNIST training
data. We can expand our training data by making many small ro-
tations of all the MNIST training images, and then using the ex-
panded training data to improve our network’s performance.

We call such expansion as data augmentation. Rotation is not the
only way to augment the data. A few examples are crop, zoom etc.
The general principle is to expand the training data by applying
operations that reflect real-world variation.

Weight initialization and Batch Normalization

Training a neural network is a highly non convex problem. There-
fore, initialization of parameters to be optimized is important. To
understand better, recall the unstable gradient problem. This is the
equation of gradients for parameters in jth layer:

oC _of i, 01 O

891 N 8uL aLIL,1 aul,l 891

If a layer is not properly initialized, it scales inputs by k, i.e

% ~ k. Therefore gradients of parameters in [th layer is

oC 11
0~ k
Thus, k > 1 leads to extremely large gradients and k < 1 to very
small gradients in initial layers. Therefore, we want

k~1

This can be made sure with good weight initialization. Histori-
cally, bad weight inits are what prevented deep neural networks to
be trained.

A recently developed technique called Batch Normalization al-
leviates a lot of headaches with initializations by explicitly forcing
this throughout a network. The core observation is that this is pos-
sible because normalization is a simple differentiable operation.

It has become a very common practice to use Batch Normal-
ization in neural networks. In practice, networks that use Batch
Normalization are significantly more robust to bad initialization.

DEEP LEARNING CRASH COURSE 20

Figure 28: Example tranining image

Figure 29: Rotated training image

http://arxiv.org/abs/1502.03167

DEEP LEARNING CRASH COURSE

Practical Advice

ImageNet Dataset and ILSVRC

ImageNet is a huge dataset for visual recognition research. It cur-
rently has about 14 million images tagged manually.

ImageNet project runs an annual contest, the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), where algorithms
compete to correctly classify and detect objects and scenes. ILSVRC
recognition challenge is conducted on a subset of ImageNet: 1.2
million images with 1000 classes.

Figure 30 shows a few example images and their recognition

results:

Figure 30: Images from imagenet.

Source.
mite container ship
mite container ship or scooter
black widow lifeboat go-kart
cockroach amphibian moped
tick fireboat bumper car show leopard
starfish drilling platform golfcart Eg
2 —
————— == N A
grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man’s-fingers currant howler monkey
Alexnet was the first CNN to participate in ILSVRC and won the
2012 challenge by a significant margin. This lead to a renaissance of
CNN:s for visual recognition. Figure 31 shows its architecture.
ENR\
p D
155 204 so0as \dense
13
3
R 3
BIRNEEES dense’| |dense
1000
192 128 Max i L
220l trigd Max 128 Max pooling 204 2048
of 4 pooling pooling
3 43

Figure 31: Alexnet architecture.

It isn’t too different from LeNet we discussed before. Over the Source.

21

http://mappingignorance.org/fx/media/2013/04/Deep-learning-5.png
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://mappingignorance.org/fx/media/2013/04/Deep-learning-5.png

DEEP LEARNING CRASH COURSE

years, newer CNN architectures won this challenge. Notable ones
are

¢ VGGNet
¢ GoogleNet
¢ Inception

e ResNet

You will keep on hearing these architectures if you work more on
CNNs. Figure 32 are the accuracies from these networks:

Figure 32: Top 1 accuracies on
god B ILSVRC. Source.

754

~
o

[=)]
v

Top-1 accuracy [%]

[=1]
o

554

50

N et W e AP A0 A9 2k 50 o>
Ao T o\ & 2
RO B 0D T NCT NCT N S e g

Q‘G

Transfer Learning

To train a CNNs like above from scratch (i.e random initialization),
you will need a huge dataset of the ImageNet scale. In practice,
very few people do this.

Instead, you will pretrain your network on large dataset like
imagenet and use the learned weights as initializations. Usually,
you will just download the trained model of one of the above archi-
tectures from internet and use them as your weight initializations.
This is called transfer learning.

This is a very powerful trick. For example, here pretrained
weights of ResNet-18 are used to train a classifier to classify ants
and bees.

This is the dataset used:

Training : 120 ants + 120 bees images

Testing : 75 ants + 75 bees images

22

https://arxiv.org/pdf/1409.1556
https://research.google.com/pubs/pub43022.html
https://arxiv.org/abs/1512.03385
https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/#Canziani16
http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

DEEP LEARNING CRASH COURSE 23

Figure 33: Ants/Bees classifier. Source.
predicted: bees

predicted: bees

predicted: ants

With this small dataset, accuracy is around 95 % !

Why does transfer learning work? 1.2 million images in ima-
genet cover wide diversity of real world images. Filters learned
on imagenet will therefore be sufficiently general to apply on any
similar problem. i.e, you will not overfit on your small dataset.

Moral of the story: you don’t need a large dataset if you are
working on real life images!

GPUs

GPUs dramatically speed up neural networks. This is because most
of the neural network computation is just matrix multiplication and
thus is readily vectorizable. GPUs excel at such computations.

For example, look at the times taken by the above transfer learn-
ing code to train:

CPU : ~ 20 min

GPU : ~ 1 min

And this was with a meagre dataset of 400 images. Imagine
working with a dataset of the scale of ImageNet. GPUs are essential
if you are serious about deep learning.

Other FAQ
What framework to use?

Lot of frameworks are available: Keras, Tensorflow, PyTorch. I sug-
gest using Keras if you are new to deep learning.

How do I know what architecture to use?

http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

DEEP LEARNING CRASH COURSE 24

Don’t be a hero! — Andrej Karpathy

¢ Take whatever works best on ILSVRC (latest ResNet)
¢ Download a pretrained model
¢ Potentially add/delete some parts of it
¢ Finetune it on your application.
How do I know what hyperparameters to use?

Don’t be a hero! — Andrej Karpathy

¢ Use whatever is reported to work best on ILSVRC.
¢ Play with the regularization strength (dropout rates)

But my model is not converging!

¢ Take a very small subset (like, 50 samples) of your dataset and
train your network on this.

* Your network should completely overfit on this data. If not play
with learning rates. If you couldn’t get your network to overfit,
something is either wrong with your code/initializations or you
need to pick a more powerful model.

Recommended reading

Find a list of recommended papers below:
* Beginner/Essential

— AlexNet [2012]: Image Classification.

— ResNet [2015]: Latest and greatest architecture on ILSVRC.
¢ Intermediate

— Dropout [2014]
— BatchNorm [2015]

He init scheme [2015]: A weight initialization scheme.

FCN [2015]: Base paper for all deep learning based segmenta-
tion approaches.

YOLO [2015]: Object detection pipeline in a single network.
¢ Advanced

— Faster RCNN [2015]: Object detection. Might feel quite in-
volved because of too many moving parts. Won MSCOCO
2015 detection challenge.

This notes is based on following sources:

Neural Networks and Deep Learning : This is a free online book
hosted at http://neuralnetworksanddeeplearning. com. Lot
of the figures, examples and sometimes text in this notes is from
this book. It is a quite simple book to read. Do read if you want
to make your fundamentals clearer.

Andrej Karpathy'’s slides and notes : Slides hosted here and notes
hosted here. His notes is really good.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1512.03385
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.01852
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497
http://neuralnetworksanddeeplearning.com
https://docs.google.com/presentation/d/1Q1CmVVnjVJM_9CDk3B8Y6MWCavZOtiKmOLQ0XB7s9Vg/edit?usp=sharing
http://cs231n.github.io

	Calculus: Recap
	Optimization
	Neural Networks
	Convolutional Neural Networks
	Tricks of the Trade
	Practical Advice
	Recommended reading

